Prescribing a Cure

June 1, 1997
"Helplessness" and "confusion" are words that easily come to mind when the issue of sick building syndrome is mentioned. It is a problem that does not

"Helplessness" and "confusion" are words that easily come to mind when the issue of sick building syndrome is mentioned. It is a problem that does not have a regulatory solution, and is bound with engineering, medicine and emotions that will challenge the best of school administrators.

A careful management style and knowledgeable use of technologies in medicine, toxicology and property maintenance are a school administrator's best allies in preparing to deal with or prevent this new generation of health and safety challenges.

Defining sick building syndrome There is no regulatory definition for sick building syndrome. Although it often relates to indoor-air-quality problems, it simply means that the environment of a building is inspiring complaints of discomfort and/or disease.

Fundamentally, the causes of sick buildings relate to architecture and engineering patterns institutionalized in school construction following World War II. Schools of glass, rock and wood, with high ceilings, cross-ventilation via a transom over the door, and windows and radiators that could be adjusted by teachers no longer were built. These schools were being replaced with new, factory-like buildings featuring a temperamental, eccentric system of master controls for indoor environment. Buildings were constructed with no regard to the environment around them or to people within the property. Today, allowing for the ambiguity in defining sick buildings, somewhere between 1-in-5 and 1-in-15 school facilities are in a situation where discomfort and disease can be attributed to operations of the building.

Health symptoms in a sick building are highly variable, but generally split into three categories:

-Radical reaction--a number of people clearly and suddenly ill. This usually involves limited air exchange combined with a "smoking gun," which can include a new chemical cleaner, misbatched chlorine in a pool area, a weather inversion preventing a kiln from venting properly or a failure of a mechanical air-exchange system.

-Unhealthy atmosphere--many people experiencing ongoing subtle illness or discomfort. The most common symptoms involve the dehydration of sensitive tissue, including sore eyes, throat or nasal membranes; a feeling of lethargy; a higher incidence of upper-respiratory infection; asthmatic reactions; low-grade headaches; and a continuum of muscle pain and general discomfort among building occupants. Much of this relates to oxygen deprivation typically caused by oxygen being displaced by other compounds, and occasionally by infestation of microbes as a result of excessive moisture remaining within the property.

-Hypersensitive reaction or multiple chemical sensitivity reaction--one or two individuals extremely ill. This can result if even tiny exposures occur to anyone that has a highly sensitive reaction to certain chemicals. Typically, these complaints should be viewed as warnings that some low-level toxin is in the area.

Although sick building syndrome usually relates to the general nature of the building itself, there are some specifics that account for most indoor-air problems:

*Combustibles; any possible introduction of carbon monoxide. *Moisture as it may relate to mold (look for growths on drywall). *Moisture as it may relate to airborne infectious agents (standing water and consequent growths). *Volatile organic compounds (VOCs), usually cleaning agents or building materials, which may give off unpleasant, sometimes toxic gases. *Formaldehydes in new carpet, pressed wood or other building products. *Any new or newly exposed particleboard. *Applied poisons (pesticides, insecticides, rodenticides, herbicides).

A proactive approach Administrators are dealing with a generation of post-World War II properties prone to indoor-air-quality problems, particularly buildings constructed or remodeled during the 1970s energy crisis. A school district should take several steps before a problem strikes. First, initiate patterns for preventing air-quality problems. Second, establish baseline information that will profile the building to facilitate an efficient, inexpensive and confidence-inspiring response. Building occupants and the community need to see a clear and confident administrative approach should a problem arise in the future.

The proactive investigation of the building should involve a limited amount of basic testing, particularly a professional review of the microbial matrix within the building--the number of colony-forming units or what kinds of microbes presently are nesting in the building. Understanding what is living in the ambient air can help administrators understand if there is a problem or, more importantly, can help to quickly isolate the exact nature of a problem.

Similarly, administrators should consider hiring an outside contractor to review how air-handling and mechanical-engineering systems are managed. A knowledgeable person should walk the area and observe the mechanical systems to see how the filtering system, the air-dispersion system and the air-dilution patterns of the building are operating. Finally, a reliable epidemiological profile of comparative absenteeism should be archived.

Administrators also need to be ready to implement a smooth, confidence-building reporting system for occupants regarding air-quality or sick-building concerns. How fast and capably the district responds can be the key to getting the issue under control. The costs for responding to indoor-air problems decrease dramatically if there is baseline data and a plan in place.

Sponsored Recommendations

Providing solutions that help creativity, collaboration, and communication.

Discover why we’re a one-stop shop for all things education. See how ODP Business Solutions can help empower your students, school, and district to succeed by supporting healthier...

Building Futures: Transforming K–12 Learning Environments for Tomorrow's Leaders

Discover how ODP Business Solutions® Workspace Interiors partnered with a pioneering school system, overcoming supply chain challenges to furnish 18 new K–12 campuses across 4...

How to design flexible learning spaces that teachers love and use

Unlock the potential of flexible learning spaces with expert guidance from school districts and educational furniture providers. Discover how to seamlessly integrate adaptive ...

Blurring the Lines in Education Design: K–12 to Higher Ed to Corporate America

Discover the seamless integration of educational and corporate design principles, shaping tomorrow's leaders from kindergarten to boardroom. Explore innovative classroom layouts...